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Surface- and optical-field-induced Freedericksz transitions and hysteresis in a nematic cell
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For a homeotropic nematic liquid-crystal cell, this paper explores the influence of the surface anchoring and
the cell thickness on the first-order optically inducede@iericksz transitions. The exact criteria for the exis-
tence of the first-order transitions at the threshold and at the saturation, respectively, are obtained in terms of
material and device parameters for arbitrary anchoring conditions. The critical cell thickness, when thinner
than which the first-order transitions will exist, is obtained. A standard for estimating the strength of the
first-order transitions is proposed. The group equations for determining the tricritical points are listed. The
factors, especially the nonmaterial factors to enhance the first-order transitions are discussed at length.

PACS numbes): 61.30.Cz, 61.30.Gd, 42.65k

. INTRODUCTION 9s(0)=2(A,sir? 9+ A, sin 6), (1.2

Particular attention has been devoted to the first-ordeYhereA; is positive, whileA, may be negative. It contains
optical-field-induced Fredericksz transitio(FOFT) in the the modifications to the RP potential and has been investi-

past two decades. Though theoretical calculations show thag,"ﬂeflh_byf somef qutth(f)rs_ irl‘ extperti_rr}é_ﬁ].t h\_Ne shall mainly
under rigid anchoring boundary conditions, some liquid crys-YS€ IS Torm of inteértacial potential in this paper.
Ong has made some preliminary investigations on the re-

Fals (LC) that hav.e.sgfflmently Iarge_ 9pt|C§| and elastic an'Iationship between the interfacial interactions and the FOFTs
isotropy may ex_h|b|t first-order transitions induced by only a[1 7). This paper dwells on this subject using an approach
single optical fleld[l]. To our _knowledge_, _the _reported déveloped in our other studies when dealing with EMBT
FOFTSs are all induced by two fields, a driving field and a1 eyact criteria for the existence of the threshold FOFT
bias field[2]. On the other hand, the single-field-induced ong the saturation FOFT are obtained in terms of material
Freedericksz transitions are obviously of great applicativeang device parameters. The group equations for determining
interest. We have investigated the weak anchoring effects ofhe threshold and the saturation tricritical points are given.
the electromagnetic-field-induced EBdericksz transition  The bistabilities are discussed exploiting our approach.
(EMFT) in our other studie$3], found that the first-order

Freedericksz transitions induced by a single dc electric field Il. BASIC EQUATIONS

or a magnetic field may exist under some anchoring condi- . . . :
tions. It shows that the first-order transitions may be en- Consider a homeotropically oriented NLC cell of thick-

hanced by the interfacial interactions, therefore making itneSSd confined between planes=0 andz=d of a Cartesian
possible to observe the FOFT in the absence of any bi coordinate system. In the cell, the average local orientation

. asf positive nematic molecules is given mfr). The NLC
fields. . . . director always lies in th&z plane and in the absence of a
Surface alignment has been widely used to obtain a unignt heam, the directors are parallel to thaxis everywhere.

form director configuration. Despite its practical importance,panote byé(2) the tilt angle between the director and the
the mechanism of the director alignment of LC films by theayis  Then the director can be described Inyz)
substrate surface is not well understood. Rapini and Papoular (sin 9,0,cosg). In the presence of a monochromatic laser
(RP) proposed a phenomenological formula to describe theam, the NLC molecules can be reoriented. Fpolariza-

weak anchoring potential per unit arg tion, the molecular director moves in the incidence plane
until a steady-state condition is reached. If the wall-
gs(6)=3% A, sir? 6, (1.9 anchoring force is the same for both cell substrates, the so-

lution is symmetric with respect to the=d/2 plane. For

where A, is the so-called anchoring strength, afds the incidence intensity, the total free energy can be written as
angle between directar and easy directioe. (1]

There are a number of theoretical and experimental indi-
cations that the surface anchoring potential dependence on d do\?

. € surtace gp dep F=Sf Tkad 1+ (k—1)Sir? 0]| -
the director orientation is much more complicated than de- 0 dz
scribed by the RP potential, especially when strong external
fields are preserb,6]. Without loss of generality, the expan- I Ny
sion of the anchoring potential with respect to?diris usu- T — o dz
e . V1+(p—1)sirt 0

ally assumed. Retaining only terms up to second order in
sir? 6 yields the two-parameter potential +A,Ssir? 6y(1+Rsir? 6;), 2.1
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where k=k;,/ks3, kq7, andks; are elastic splay and bend The boundary condition for solutiof2.6) becomes
constants;n=n(2,/n§, n,, N are ordinary and extraordinary
refractive indices at the optical frequency respectivéty;

=A,/A,; cis the light speed; and), is the value of@ (1+ysin? 6)33( 0o, 0)

evaluated ar= 0. Hereafter symbols with subscripts 0 and a? sir? 6,co (1+ 2R sir? ;)

denote the corresponding functional values evaluated at _

=0 andz=d/2, respectively, if they are not specified other- _ V1+ psir? 6, 5
wise. Besidesc and R, the following dimensionless param- - V1+ pSir? 6p— 1+ p Sir Gm, 2.7

eters will also appear in the rest of this paper for the sake of

conveniencen=n—1, y=k— 1. Remember that we always

have u<0 for the positive nematic liquid crystals. where
The variation of the total free energy leads to the bulk

equation

d20 d6)2 _Ad
(1+ ysir? 0)W+ysinecose(ﬁ) 7 2kas'

In, umsindcosd
* Ckaz (1+ p sir? 6)332_0’ 2.2 , )_f [1+ ysir? 0]V1+ usir? @
100, Om) = V1+ psir? 6— \/1+,usm20

and the boundary condition at=0

] do
ksd 1+ y sir? 90](&) The Gibbs free energy corresponding to the three solutions
z=0 are denoted, respectively, by

=A, sinf, coshy(1+2RSir? 6,). (2.3

The solutions of Eq92.2) and(2.3) describe the equilib- Go= — '”_oSd 2.8
rium orientation of the NLC throughout the medium. There 0 c ' '
exist three solutions. The first one is

=0 24 G, = IneSd+A S(1+R) (2.9
The second one is ¢ 2 ’ '
0= ml2. (2.5
The last one is AS
Gdef:T{Jl(BOvem)_z\]l( 00,0m)J2( 0o, Orm)
ck
2(6)= \/2 ”‘:3 (1+ w sir? 6, X1+ 1 SIrP O} + ASSir? 0p(1+ RSir? dp),
o
(2.10

Xfe (14 ysir 6) 1+ u sirf 6

V1t psin® 0= \1+ psirt O where subscripts 0z/2 and def stand for the uniform solu-

(2.6)  tion #=0, 6=«/2 and the deformed solutiof2.6), where

(60.6.)= f \/ 1+ ysirf 6
J2( 6o, bm) = (14 w sir? 6)— \/(1+,,L3|n29)(1+M3|n29m)

The detailed derivation of Eq$2.7) and (2.10 are in Ap- less function for the given intensity

pendix A.
The stable or metastable states described by the three so- _ Gaer—Go 21
lutions correspond to the initial state, the saturation state, and 9= AS (213

the deformed state, respectively. Near the threshold, solu-
tions (2.4) and (2.6) are the possible stable or metastableDue to the same reason, near the saturation, for the given
states. It is instructive to consider the following dimension-incidence intensity, we have the function
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Ger~ G
2= ALS (2.12
We will derive the criteria for the existence of the first-order
transitions with the help ofj; andg,.

Another important function is the incidence intensity
given by solution(2.6). Noting that6= 6, at z=d/2 plane,
by (2.6) we obtain

1(6g,0m) =1+ wSir? 6,32( 6, 0T,

where constant = (2ckzg)/n,d?. The boundary condition
(2.7 and the function$2.11)—(2.13 underlie this paper.

(2.13

Ill. THE THRESHOLD FOFT

For convenience, we introduce variablesand v by u
=Ssir? 6,,, Sir’ #=uw, (Sir? §y=uy). For the director reorien-
tation near the threshold, plays the role of an order param-
eter,u=0 describes the uniform state=0,u#0 describes
the deformed state. Now the two integrals become

I (e )= f1 \/[1+’yuv]\/l+/.LUV
A D B

Vi+pur—1+uu2Jur(l—up)’

J2<vO,u)=fio\/(

udy

1+ yuw
1+ pup)—(1+ pur)(1+ pu)

y udy
2Juv(1—uv)
The boundary condition transforms to
Ji(Vo:U) (1+ yuvg) B u
az Vo(l_uVO)\/1+/.LUVO \/1+/.LUVO_\/1+/.LUI

(3.

Condition(3.1) defines an implicit function ofy(u), conse-
quently the two integrals can be written &gu) andJ,(u),
thenl andg,; become functions of order parameterEqua-
tion (2.13 transforms to

\/ I(T—u)=(1+MU)1’4J1(U)-

Eliminating | in Gg by Eg.(3.2), then we obtain

(3.2
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FIG. 1. (a) Implicit functionsC;(a) andC,(«a). They are posi-
tive and monotonous functions. Ijlmo[Cl(a):l,Cz(a):ﬁ;],
lim,_, ,.[Ci(a)=0,Cy(a)=0]. (b) Implicit functionsC3(A) and
C4(A). They are positve and monotonous functions.
lima_o[Cs(A)=1Ca(A) = 5], iMa_,.[C5(A)=0Ca(A)=73]

).

or from

d

"~ (3.5

u=

The criterion can be obtained from

The reasons are obvious, both E@&4) and(3.5) contradict
the requirement of the second-order transitiordgt 0, so
they predict the first-order transition. Direct calculations also

1
91(U) = —{IF(u) + V1+ pu[I5(u) =2, (u)Ip(u) ]}
show the equivalence of Eq&.4) and (3.5),

+uvg(u)[ 1+ Rupyg(u)]. (3.3
The first question of interest is the criterion for the exis- pnld I a [ d?gy
tence of FOFT. We have developed an approach for solving  — Vo \V — 2| - \/z = 2 '
. : . 2\ du | 2\ duv ) _
this problem under weak anchoring cases in our other works. = u=0

(3.6

d?g;
du®

|

>0,
0

(3.4  wheref(Vy)>0 (see Appendix B After complicated cal-

culations(see Appendix Bwe obtain the criterion

.
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ng 4k 4 kg 4sindB+8sin2B or represented as the well known form
<|1l-=—|+=—|= -
ﬁg (1 9 k33) * 9 ki3 Sin4B+ 8 sin 26+ 12,8}
4 A in2 T [l 2Kaa| 1}
_64A, : sin '8_(:052’8 , (3.7) cot{— lh}: it Y L (3.12
3 A,|sin4B+8sin28+12B 2 Vg Axd|[2 Vg
where 8 e [0,7/2] is determined by the boundary condition This is the same as what Ong has obtaifs=k Eq(5.14) in
atu=0, i.e., by Ref.[1]].
The rising threshold order parametaf, then can be
A,d solved out from
BtanB= Te,g (3.8
Besides the criterion for the existence of FOFT, another ¢ 2Ckss Mo Ne |5
; . . X o - ) th="72 1+ ———uy | I7(uy). (3.13
question of interest is the bistability. The rising and falling nyd ng

transitions are mirrorless, the rising threshold intensity satis-

fies 1(ul) =(1)y—o., While the falling threshold intensity is For the falling threshold, we could first determine the order
the minimal extremum of (u). ForIf.<I<I., there exist Parameteuy, by solving

two steady states and a hysteresis. Now we give the equa-

tions for determining the tricritical points near the threshold.

For the rising threshold, we first determine the critical d I(u) d " n2—n2 1/4.3 w|=0
i i o — — /= ——u u) (=0,
intensity. Settingu=0 at Eq.(3.2) follows that du T du n? 1
(3.19
(3.9 then obtain the falling threshold intensity by
2ck nz—n2
where |{h=Td323 (1+ °n2 eu{h)ai(u{h). (3.19
e
| _Ck33 772 ng 3 1
" n, d? (nZ-n?)’ (310

The above two equations are inspired by what Ong has pro-

. . . posed[see Eq.4.9) in Ref.[1]].
For the rigid anchoring conditiorA,— +<; from Eq.(3.8)

we have g— m/2; then from Eq.(3.9 we havelj—l,.
Thereforel is just the threshold intensity for the rigid an-
choring condition, and this is in agreement with what Ong

: _— At the saturation, the results are similar to those of thresh-
has obtainedsee Ref[1], Table I,1 ). Substituting Eq(3.9 ! ; .
intg Eq (|3 S;ﬂi/ields (4 F)- Substituting Eq(3.9 old. The order parameter is chosenas co¢ 6, instead; the

intermediate variablex is introduced by cds9=wix,
(cog Gy=wIxo). It can be easily proved thad(z)= /2
throughout the medium whe#,,= 7/2, sow=0 describes

r r
(Z Il‘) ta,-(z ﬁ) =_= (3.11 the uniform stated(z) = #/2 throughout the medium. The
lo/ 2Ka3 two integrals transform to

IV. THE SATURATION FOFT

1
. ,
' Xo MW M 5 W w
1-———\/1-—w2x3\/—|1-—
n X n X X




PRE 62 SURFACE- AND OPTICAL-FIELD-INDUCBED . . . 693

The boundary condition becomes n§>( . 4_1 k_33)
nZ 3 kyy
, rw 4 Kgg 4B secl B+ 4 tanhB seck B
o« ! K Xo 3 ky; 3B sec B+ 3 tanhB secH B+ 2 tanhB
2 2 2
a® (1+2R) ll_ﬁﬂ (1_ 2R ﬂ) (1_ﬂ) X 32,
7% | 1T2RX Xo 3(Axt2A,)
1 w v tanhB 4
:X_o \/ oW \/ : 4.0 3B secl B+ 3 tanhB seck B+ 2 tanhB’ “.0
1-———\/1-—w
n Xg 7 whereB €[ 0,+9] is determined by the boundary condition
atw=0, i.e., by
which defines implicit functiorxy(w). (A, +2A,)d
The two important functions and g, are both functions BtanhB= 2k, (4.8

of order parametew,
The rising saturation transition occurs at the maximum
extremum ofl (6,,), the falling saturation critical point sat-

I(w) 1a isfies (Wl)=(1)w-o. Forlfl<I<IL,, bistability and hys-
V T = (7= W) (W), (42 teresis exist.

The rising saturation order parametef,, can be deter-
mined by solving

1+4/1- %w}Ji(w) 4 fiw d

dw ¥ 7 dw

1
ga(w)=—

a

:O'
n2 n?

1/4
Ny na—ng
2
= w| Iw)

e e

— 23, (W) Ip(W)\p\/1— %w] (4.9

while the rising saturation intensity can be obtained by

(1+2R)w RwW
- (4.3

+ 2 2ck: nZ n?-n?
Xo(W Xo(W 33
o(W) [Xo(W)] |£at=W (n—g— %W;at)‘]i(w;at)' (4.10
o] e e

The criterion for the FOFT at saturation can be derived bysettingw=0 in the right side of Eq(4.2) yields

either of the following two relations:
wlly m  [nkayl!
B=7]73/4 __ﬁtz_ en33 sat. (41])
( d \[) 2k T 2 ¥V ndkylo
— /- >0 (4.9
dw VT

wW=0 Substituting Eq(4.11) into Eq. (4.8 follows
z nek33l sat tan z nek33| sat| (Ay+2A,)d
and 2 N 3k, 2 N 3k, 2Ky
(4.12
2
d'g, >0 (45  orrepresented as the well known form
dw? weo '
™ nek33| sat 2Ky ™ nek33I sat
N5 NV 3k, |~ At 2a9d | 2 N Wik, )
The equivalence of Eq¢4.4) and(4.5) also can be seen from 07110 27 0"t 0(4 13

which determines the falling saturation intensity. The falling
—2uK d I 14 d%g, saturation intensity is just the intensity to maintain the satu-
h2(Xo) dw V7 =2an aw? ' ration state, Ong obtained the above relation in REf[see
K I w=0 Eqg. (5.17 in Ref.[1]]. The falling saturation order param-
(4.6 eter then can be obtained from

w=0

. . 2Ckss [(n5 ng—ni o\
whereh,(Xg)>0 (see Appendix B e— —— ———wl | IAwl). (4.149
The criterion for the existence of FOFT at saturation is nod Ne N,
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V. DISCUSSION AND CONCLUSIONS The definition ofB requiresB>0 (see Appendix B it
follows thatA,+2A,>0. If A,<O0, we note that Eq95.5
and(5.6) can be met naturally for any positive nematic ma-
terials in a homeotropic cell. It follows an interesting conclu-
The anchoring strength can be characterized by the folsion: for any positive nematic materials in a homeotropic

A. The boundary conditions, optical anisotropy,
and the criteria

lowing two dimensionless parameters: cell, if the anchoring conditions at the substrates are kept
unchanged, then there exists a critical cell thickness, when
a= ﬂ — .(A2+2A4)d. (5.1) thinner than which the first-order transitions will exist. If
PACTY ZASH! A,>0, the critical cell thickness may not exist for relatively
largeA,.
a andA are related only to material mechanical parameters pyact critical cell thickness can be obtained numerically
and cell geometrical parameters. Whei,=0 and 6 from Egs.(5.3) and (5.4), which, for smalla andA, can be
=m/2, the boundary conditions become approximated by
BtanB=«a, BtanhB=A. (5.2 I’lg 4 kyq 1 4A, a?
—<l-—=—|a—=a? ——(1—a+— , (5.9
(Here A and B represent upper case Greek alpha and peta. Ne 9 Kas 3 3 A 3
Due to Eq.(5.2), the criteria(3.7) and(4.7) can be expressed
as M 14 2 Kan A+£A2)+—L 1+A+£A2)
, n2 9 ky; 2 3 (A, +2A,) 27 )
n 4 k 4 k .
F‘z’<( 1-35 k“) 5 k” (@) — RCz(a) (5.3 (610
e 3 respectively, where we emplog®~a—a?/3 and B>~A
2 Ak Ak 2 R +A22. If o? a_m_dAZ_ in Egs. (5.9 and(5.10 are neglected,
_e>( _ _33) __ 33(:3( A+ = ———Cu(A), then the explicit critical cell thickness, denoted 8y, and
5 3K/ 3Kp 3 1+2R 54 ds.., respectively, can be obtained approximately,
5.4
2Kass n2 4A,
respectively, where€,(a), Cs(a), C3(A), andCy(A) are A TR 3A,
illustrated in Fig. 1. The material optical parameters appear A~ 2 i 2 ' (5.11)
only in the left-hand sides of Eq$5.3) and (5.4). So the (fk_ll_ 4 Ay
above two criteria explicitly prove a law: for the first-order 9kss 3 A,
Freedericksz transition to occur either at threshold or satura-
tion point, n,/ne should be small, i.e., optical anisotropy 2Ky ng 4 A,
should be large. (Ax+2A,) (ng 3 A +2A,
The four functionC(«@), Cs(a), C3(A), andC,(A) are af< (5.12
all positive and monotonous, so the requirements for the first (f k_?>3+ f As
order transition can be stated @ small « and negativer, 9kyy 3AF2A,
small n,/ng, and smallk,/ks3 favor the threshold FOFT;
(2) small A and negativeR, smalln,/n,, and smallkass/ky; Yang and Rosenblatt reported an interfacial potential of
favor the saturation FOFT. Js= (117 Slﬁ 0+7.8 Slﬁ1 0))(1073 erg/Cﬁ? for a MBBA ||q-

uid crystal homeotropic ce[l6]. By using the related mate-
rial parameters listed in Table I, we find that FOFT will not
occur for any cell thickness.

When the cell thicknesd—>0, the criteria for threshold The reported measurements of the anchoring Strength

B. The critical cell thickness

and saturation FOFT become, respectively, show thatA, is about (10%—10") erg/cn? [8]. Under the
5 special anchoring conditions A,=10"%erg/cnt, A,

n_‘z’< 1— afall 55 =0 erg/cnt, we calculate the critical cell thickness for some

ng 3A; known NLC’s in Table 1[9].
Obviously the thinner the cell thickness, the stronger the
n2 1. 4 A, 5.6 first-order transitions, so
2> _ .

3 (Art2Ay)” d<dy, or dey (5.13

When the cell thicknesd— +, the criteria for threshold

. . predicts strong first-order transitions. Table | shows that at
and saturation FOFT become, respectively,

110°C PAA will be most suitable for observing the first-
n2 4k order transitions in the absence of any bias fields.
(o] 11

(5.7
C. Criteria for the anchoring limits
The anchoring limits include the rigid anchoring limit and
(5.8  the zero-anchoring limit, which can be attained by taking the

n2 4kss 16 A,
3Ky 3 (At2A)° limit A,— + o or 0 in the single parameter RP potential. The

2>1+
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TABLE I. The critical cell thickness for the threshold and saturation FOFTs under special weak anchoring
conditionsA,=10"* erg/cnt, A,=0 erg/cni.

Temp. Kqy ka3 A din Osar
NLC (0 (107" dyn) (10" dyn) A) No Ne (um) (um)
E, 30 10.1 16.20 5893 1.524 1.732 264 83
5CB 26 7.20 8.52 5890 1.533 1.703 86 64
5CB 26 7.20 8.52 5890 1.540 1.719 90 67
5CB 26 5.20 7.17 5890 1.533 1.703 84 40
8CB 34 4 7 6328 1.516 1.665 94 21
8CB 34 4 7 6328 1.521 1.670 94 21
MBBA 22 6.95 8.99 6328 1.544 1.758 120 72
PAA 110 9.26 18.10 4800 1.595 1.995 574 120
PAA 120 7.80 13.60 4800 1.600 1.967 361 103
PAA 125 6.94 11.90 4800 1.605 1.949 296 86
PAA 130 5.67 9.05 4800 1.611 1.928 196 69
criteria for the anchoring conditions described by the RP (kn 9 n? 9) \/m (kﬂ 3 n? 3)
potential can be obtained by settidg=0 in Egs.(3.7) and —t - —=——=|T\/ | —t+ =~
(47), k33 4 ne 4 IO k33 4 ne 4
r
(1t haf asngpdngs | cai =] <0 519
ng 9 kag/ 9 kgg|sin4B+8sin26+128| 0
5 (519 To make a comparison with our criteridb.14), we apply
Ne 4 K3 Egs.(3.9) to Eq.(5.19 and rewrite it as
EZ><1+ §k_) 2
0 1 ng 4 kll) 4ky, 2sin2B
4 Kag 4B secli B+4 tanhB secH B _§<(1 9 ksl 9 Kg368+sin28° (5.20

3 ky, 3Bsec B+ 3 tanhB secf B+ 2 tanhB"*
51 We see that the difference between E§s20 and(5.14) is
(5.19 great. We obtain our criterion through exact calculation,
Taking the limit of 8— /2, B— + o transforms Eqs(5.14) while approximation is introduced in Ong’s calculation when

. - o : o employing Landau theory. Therefore the criterion obtained
and(5.15) into the criteria for the rigid anchoring conditions, by Ong for the finite anchoring conditions is incorrect and

2 .

ng 4 ku) should be revised.

—<|1—=—], 51

na 9 ka3 (518

ng 4Ky E. Conclusions

2 + 3k (5.17 We explored in this paper the first-order transitions in-
0 11

duced by the surface field and the optical field. For an ini-
. Lo : tially homeotropically aligned LC cell, the exact criteria for
For t_he zero-anchoring limit, interestingly both of the two the threshold and saturation FOFTs are given under any an-
criteria degenerate to . " ;
choring conditions. They can be summed up as follows:
No<Ne, (5.18 (1) Weak interfacial interaction favors FOFT, i.e., small
A, and negatived, may lead to the first-order transitions.
which holds naturally for all positive nematic liquid crystals. (2) Large material anisotropy favors FOFT, i.@,/n,
should be small for both threshold and saturation FOFT,;
D. Comments on the criteria obtained by Ong also, for the threshold FOFk,;/ks3 should be small, and
for the saturation FOFTK33/k,4, should be small.

Ong has tried to give the criteria for the transitions to be . . .
first order. For the threshold transition, he proposed that (3) The thinner cell favors FOFT. There exists a critical

[dl/d(ﬁﬁq)]em=o<0 predict first-order transition, This is ex- cell thickness for any positive nematic liquid-crystal homeo-

i _ tropic cell whenA, is negative or positively minimal.
act and is adopted by us in E@.5. However, when calcu- The surface interaction remains one of the least under-

lating [d1/d(67)]s —o. the approximation is introduced. It stood areas of the liquid-crystal physics; the conclusions ob-
does not cause trouble for rigid anchoring conditipese tained in this paper pose a question on the surface technique:
Eqg. (4.9 in Ref.[1] and Eq.(5.16 in this paper; they are how to obtain the surface anchoring condition of miniral
samd, while for finite anchoring conditions, he failed to give and negativeA,. Under this condition, one may expect to
the correct criterion. Here we copy his criterion for compari-observe the first-order transitions in the absence of any bias
son[Eq. (5.16) in Ref.[1]] fields.
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APPENDIX A

We denoten,,(6) =nyne/(/ng sir? 6+n; cos 6). Integrating Eq(2.2) yields

d6\? 21 ny(6m) —ny(6)
(E) " Ckgg 1+ (k—1)si? 0’ (AL)
or it is rewritten as
(1+ ysir? 0)J1+usir? @
d 1 e 6, A2
*~N2in (+”S' m) J1+ psir? 69— \/1—|—,u5|rrzt9 A2)

Substituting the above relations and E@&13 into (2.1) yields

2

1
Gyer= ZSfowz[zk3il+(K—l)Sin2 0](%) - —np]dz+ SA, sir? 6y(1+ Rsir? 6,)

dz+ SA sir? 6y(1+ Rsir? 6)

dr2f | |
:Zsfo [E[np( em)_np( 0)]— Enp( 0)

oo [fm 21 Ckas [1+ (k—1)sir” 6] _ _
_25100{ Np(Om) — p(a)] 20 ()] dO+SA, sir? 6y(1+ Rsir? 6,)

:s\/ﬂ?g(lwsinz0m)”“f9m{np(0m)—2np(0)}\/ (14 ySi 6) 1+ usinr 0 d 6+ S A, Sin? f( 1+ Rsir? 6,)
(0} 00

V1+ wsir? 6— 1+ psir? 0y,

[21K
=S Cn33(1+M SIN? O) YNy (O I1— 2n0J} + S Ay sir? O(1+ R'sir? )
(o]

25 k
-3 x/1+M SI Ol Np( O) I2— 2043135} + S A SIf? 61+ R Sir? 6,)

A,S
=%{Jf— 23,3531+ 11 SIrP 0,0} + S Ay Sir? 0(1+ R sir? ). (A3)
Applying the same relations on E(.3) yields Eq.(2.7)

APPENDIX B
We define

v (ngo) f( ) fl VndV
= | ——— s v — ————————
Tl L Y L2 ua=)

and then we have

1
fo(Vo):arCCOS/V—- fl(Vo):E[fo(Vo)"'\/Vo(l_Vo)], f2(vo) =13 fo(vo) + Vro(1—1vp)

Vo
a\/ = Vo—arccos/— (B1)

We defineB=arccos/V,, then(B1l) becomesy= BtgB. Taking the first-ordeu derivative atu=0 results in

The boundary condition at=0 becomes

) 3
[ﬁ} [fl(V0)+VO o(Vo) I+ M[fl(Vo)—Vofo(Vo)]—ZRVofo(Vo)- (B2)

Because
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2
(J)y=0=\ — ;fo(Vo), (B3)

(dJl) =/ 2 v +1(3 +450)f (V)+1 fo(Vo) (B4)
du o “ 2—v0(1—v0) g\ M T AK)T1Vo) T g MTol Vo) [
so we have
— — = At —
du VT 4( vu=0 du/
u=0 u=0
w 2 2 Vv, 1 1
=7\ = fo(Vo)+ \ = = = et (Bt 41 F1(Vo) + o ufol(Vo)
4 M M 2yVe(1—V,y) 8 8
2 (k| 2f3(Vy) (Vo) VetV
=\ —— 1= | =———=-11(Vo)— Vofo(V.
3u 211(Vo)
+Ig[HW&+%Wd}ﬁiﬁfvﬁ—HW&+VMdWD+R%%0%)- (B5)
We have, by applying EqB1),
dg; 1
du :;[avo_ VVo(1—Vo)fo(Vo)]=0, (B6)
u=0
and
d?g; 2 f1(Vo) 2
(W)UO:; m Vi+ ;{(%M—K)fo(Vo)[fz(Vo)—f1(Vo)]—(%M+ ) f3(Vo) + aRV3}
=2 (Vo) + Vofo( Vo) 213V +2(3“) (Vo) —Vof o Vo) — [F1(Vo) + Fo( Vo) ] a2V
a d 1 0 o'o 0 m @ 16 1 0 o'o 0 1 0 0 0 \m
2
T RVofo(Vo). (B7)
We define
. 2a(1+2R) R WK X (d"xo) h(x) fl dx
=, = y S:_, = ) X = i ’
K p 03 " n de o n{”A0 %o Xn 1—x
then we have
hy() =I 1+1—x, o) 1h( )+\/1—x0 ha(x) 3h( )+1\/1—x0 3 V1—x,
Xo)=In| ——], Xg) = = hy(X _ Xg) = = h(x = — )
1\A0 1_\/1_—)(0 2\{A0 210 XO 3\A0 8102)(3 4X0
The boundary condition av=0 becomes
1+vV1—X t
n 0| = . (B8)
1-V1-Xo/ V1-X,
We defineB=3 In[(1+1—X,)/(1—J1—X,)], then we have B tanhB=t. The first-order derivative is
C1[({4p 1 3s| hy(Xp) (1-Xp) (1 3s
Xi=y (T+§+§> %) X, 12 §)t7X) (B9

Because
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K7
(JDw=0=\ — ﬂhl(xo), (B10)
—] =\ =5 == 2 =|ha(Xe)— 5 —hy(Xo) |{ B11
(dW o 21“’ XO /—1_>(O 2 8 7 2( O) 8 7 1( 0) ( )
So we have
i I_ _E —3/4(_ )(J) + 1/4%
dw T 477 M) w=0TT7 dw/
w=0 w=0
1 K7 - X4 11 M
_ T —3/4
=— 5 3\ — =1 hy(Xo)+47n —+(———— (Xo)— = —hy(Xo)
4 2#[ 1\/A0 XO\/]_——XO 2 3 2\ 0 " 1\/A0
7 1 t? t t)| 3s/ 3t 3ttt 4p
= - + —|l-=|——+—+=|-=- (B12
V=2urhy(Xg) | 214(1=Xo)  2Xo X3| 8 14(1-Xo) 2X, X3 X3
We have, by applying EqB8),
dgz K 1_X0 t
a(m) B —5 hl(Xo) Xo _X_o =0 (813)
w=0
and
o) _ x| 2R | 38 R e 2 k2 [ = 2 2 h X o (X + P
aWw:O_Klm ZEl(o)a(o)Zl—Gz(o) Zl_Gl(O)Z(O)X_S
11 t? t t) 3s/ 3t? 3t t) 4p B14
“212\a=%g T 2% X2 B \ai=%g T 2%, T X2 X2 B19

[1] H. L. Ong, Phys. Rev. 28, 2393(1983.

[2] A. J. Karn, S. M. Arakelian, Y. R. Shen, and H. L. Ong, Phys.
Rev. Lett.57, 448 (1986, the bias field is the magnetic field.
Shu-Hsia Chen and J. J. Wu, Appl. Phys. L&R, 1998
(1988; the bias field is the electric field. E. Santamato, G.
Abbate, R. Calaselice, P. Maddalena, and A. Sasso, Phys. Rev.
A 37, 1375(1988; the bias field is the optical field.

[3] The papers about electrically and magnetically induced transi-
tions are to be published.

[4] A. Rapini and M. Papoular, J. PhyéParig, Collog. 30, 4
(1969.

[5] K. H. Yang, J. Phys(France 44, 1051(1983; H. Yokoyama
and H. A. van Sprang, J. Appl. Phy§7, 4520 (1985; G.

Barbero and G. Durand, J. PhyErance 46, 2129(1986); G.
Barbero, N. V. Madhusudana, and G. Durand, Z. Naturforsch.
Teil A 39, 1066(19849; G. Barbero, N. V. Madhusudana, and
G. Durand, Phys. Lettl03A, 385(1984; M. I. Barnik et al,

Zh. Eksp. Teor. Fiz., 85, 17@983 [Sov. Phys. JETP 58, 102
(1983)].

[6] K. H. Yang and Ch. Rosenblatt, Appl. Phys. Lettl, 438

(1983.

[7] H. L. Ong, R. B. Meyer, and A. J. Hurd, J. Appl. Phys5,

2809(1984.

[8] See Ref[1] and its Ref[58].
[9] See Ref[1] and its Table lIl.



