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Surface- and optical-field-induced Fréedericksz transitions and hysteresis in a nematic cell

Jianru Shi
Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, P.O. BOX 5190, Kent, Ohio 44

Hong Yue
Research Institute of Robotics and Automation, Hebei University of Technology, Tianjin 300130, People’s Republic of Chin

~Received 17 May 1999; revised manuscript received 20 January 2000!

For a homeotropic nematic liquid-crystal cell, this paper explores the influence of the surface anchoring and
the cell thickness on the first-order optically induced Fre´edericksz transitions. The exact criteria for the exis-
tence of the first-order transitions at the threshold and at the saturation, respectively, are obtained in terms of
material and device parameters for arbitrary anchoring conditions. The critical cell thickness, when thinner
than which the first-order transitions will exist, is obtained. A standard for estimating the strength of the
first-order transitions is proposed. The group equations for determining the tricritical points are listed. The
factors, especially the nonmaterial factors to enhance the first-order transitions are discussed at length.

PACS number~s!: 61.30.Cz, 61.30.Gd, 42.65.2k
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I. INTRODUCTION

Particular attention has been devoted to the first-or
optical-field-induced Fre´edericksz transition~FOFT! in the
past two decades. Though theoretical calculations show
under rigid anchoring boundary conditions, some liquid cr
tals ~LC! that have sufficiently large optical and elastic a
isotropy may exhibit first-order transitions induced by only
single optical field @1#. To our knowledge, the reporte
FOFTs are all induced by two fields, a driving field and
bias field @2#. On the other hand, the single-field-induc
Fréedericksz transitions are obviously of great applicat
interest. We have investigated the weak anchoring effect
the electromagnetic-field-induced Fre´edericksz transition
~EMFT! in our other studies@3#, found that the first-order
Fréedericksz transitions induced by a single dc electric fi
or a magnetic field may exist under some anchoring con
tions. It shows that the first-order transitions may be
hanced by the interfacial interactions, therefore making
possible to observe the FOFT in the absence of any
fields.

Surface alignment has been widely used to obtain a
form director configuration. Despite its practical importan
the mechanism of the director alignment of LC films by t
substrate surface is not well understood. Rapini and Papo
~RP! proposed a phenomenological formula to describe
weak anchoring potential per unit area@4#

gs~u!5 1
2 A2 sin2 u, ~1.1!

where A2 is the so-called anchoring strength, andu is the
angle between directorn and easy directione.

There are a number of theoretical and experimental in
cations that the surface anchoring potential dependenc
the director orientation is much more complicated than
scribed by the RP potential, especially when strong exte
fields are present@5,6#. Without loss of generality, the expan
sion of the anchoring potential with respect to sin2 u is usu-
ally assumed. Retaining only terms up to second orde
sin2 u yields the two-parameter potential
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gs~u!5 1
2 ~A2 sin2 u1A4 sin4 u!, ~1.2!

whereA2 is positive, whileA4 may be negative. It contain
the modifications to the RP potential and has been inve
gated by some authors in experiment@6#. We shall mainly
use this form of interfacial potential in this paper.

Ong has made some preliminary investigations on the
lationship between the interfacial interactions and the FOF
@1,7#. This paper dwells on this subject using an approa
developed in our other studies when dealing with EMFT@3#.
The exact criteria for the existence of the threshold FO
and the saturation FOFT are obtained in terms of mate
and device parameters. The group equations for determi
the threshold and the saturation tricritical points are giv
The bistabilities are discussed exploiting our approach.

II. BASIC EQUATIONS

Consider a homeotropically oriented NLC cell of thic
nessd confined between planesz50 andz5d of a Cartesian
coordinate system. In the cell, the average local orienta
of positive nematic molecules is given byn(r ). The NLC
director always lies in thexz plane and in the absence of
light beam, the directors are parallel to thezaxis everywhere.
Denote byu(z) the tilt angle between the director and thez
axis. Then the director can be described byn(z)
5(sinu,0,cosu). In the presence of a monochromatic las
beam, the NLC molecules can be reoriented. Forp polariza-
tion, the molecular director moves in the incidence planexz
until a steady-state condition is reached. If the wa
anchoring force is the same for both cell substrates, the
lution is symmetric with respect to thez5d/2 plane. For
incidence intensityI, the total free energy can be written a
@1#

F5SE
0

dH 1
2 k33@11~k21!sin2 u#S du

dzD
2

2
I

c

no

A11~h21!sin2 u
J dz

1A2Ssin2 u0~11R sin2 u0!, ~2.1!
689 ©2000 The American Physical Society
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wherek5k11/k33, k11, and k33 are elastic splay and ben
constants;h5no

2/ne
2, no , ne are ordinary and extraordinar

refractive indices at the optical frequency respectively;R
5A4 /A2 ; c is the light speed; andu0 is the value ofu
evaluated atz50. Hereafter symbols with subscripts 0 andm
denote the corresponding functional values evaluatedz
50 andz5d/2, respectively, if they are not specified othe
wise. Besidesk and R, the following dimensionless param
eters will also appear in the rest of this paper for the sake
convenience:m5h21, g5k21. Remember that we alway
havem,0 for the positive nematic liquid crystals.

The variation of the total free energy leads to the b
equation

~11g sin2 u!
d2u

dz2 1g sinu cosuS du

dzD
2

2
Ino

ck33

m sinu cosu

~11m sin2 u!3/250, ~2.2!

and the boundary condition atz50

k33@11g sin2 u0#S du

dzD
z50

5A2 sinu0 cosu0~112R sin2 u0!. ~2.3!

The solutions of Eqs.~2.2! and~2.3! describe the equilib-
rium orientation of the NLC throughout the medium. The
exist three solutions. The first one is

u[0. ~2.4!

The second one is

u[p/2. ~2.5!

The last one is

z~u!5A ck33

2 Ino
~11m sin2 um!1/4

3E
u0

uA ~11g sin2 u!A11m sin2 u

A11m sin2 u2A11m sin2 um

du.

~2.6!
e
a
ol
le
n

of

The boundary condition for solution~2.6! becomes

~11g sin2 u0!J1
2~u0 ,um!

a2 sin2 u0 cos2 u0~112R sin2 u0!2

5
A11m sin2 u0

A11m sin2 u02A11m sin2 um

, ~2.7!

where

a5
A2d

2k33
,

J1~u0 ,um!5E
u0

umA @11g sin2 u#A11m sin2 u

A11m sin2 u2A11m sin2 um

du.

The Gibbs free energy corresponding to the three soluti
are denoted, respectively, by

G052
Ino

c
Sd, ~2.8!

Gp/252
Ine

c
Sd1A2S~11R!, ~2.9!

Gdef5
A2S

a
$J1

2~u0 ,um!22J1~u0 ,um!J2~u0 ,um!

3A11m sin2 um%1A2Ssin2 u0~11R sin2 u0!,

~2.10!

where subscripts 0,p/2 and def stand for the uniform solu
tion u[0, u[p/2 and the deformed solution~2.6!, where
J2~u0 ,um!5E
u0

umA 11g sin2 u

~11m sin2 u!2A~11m sin2 u!~11m sin2 um!
du.
iven
The detailed derivation of Eqs.~2.7! and ~2.10! are in Ap-
pendix A.

The stable or metastable states described by the thre
lutions correspond to the initial state, the saturation state,
the deformed state, respectively. Near the threshold, s
tions ~2.4! and ~2.6! are the possible stable or metastab
states. It is instructive to consider the following dimensio
so-
nd
u-

-

less function for the given intensityI:

g15
Gdef2G0

A2S
. ~2.11!

Due to the same reason, near the saturation, for the g
incidence intensityI, we have the function
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g25
Gdef2Gp/2

A2S
. ~2.12!

We will derive the criteria for the existence of the first-ord
transitions with the help ofg1 andg2 .

Another important function is the incidence intens
given by solution~2.6!. Noting thatu5um at z5d/2 plane,
by ~2.6! we obtain

I ~u0 ,um!5A11m sin2 umJ1
2~u0 ,um! Ĩ , ~2.13!

where constantĨ 5(2ck33)/nod2. The boundary condition
~2.7! and the functions~2.11!–~2.13! underlie this paper.

III. THE THRESHOLD FOFT

For convenience, we introduce variablesu and n by u
5sin2 um, sin2 u5un, (sin2 u05un0). For the director reorien-
tation near the threshold,u plays the role of an order param
eter,u50 describes the uniform stateu[0, uÞ0 describes
the deformed state. Now the two integrals become

J1~n0 ,u!5*n0

1 A @11gun#A11mun

A11mun2A11mu

udn

2Aun~12un!
,

J2~n0 ,u!5*n0

1 A 11gun

~11mun!2A~11mun!~11mu!

3
udn

2Aun~12un!
.

The boundary condition transforms to

J1
2~n0 ,u!

a2

~11gun0!

n0~12un0!A11mun0

5
u

A11mun02A11mu
.

~3.1!

Condition~3.1! defines an implicit function ofn0(u), conse-
quently the two integrals can be written asJ1(u) andJ2(u),
then I andg1 become functions of order parameteru. Equa-
tion ~2.13! transforms to

AI ~u!

Ĩ
5~11mu!1/4J1~u!. ~3.2!

Eliminating I in G0 by Eq. ~3.2!, then we obtain

g1~u!5
1

a
$J1

2~u!1A11mu@J1
2~u!22J1~u!J2~u!#%

1un0~u!@11Run0~u!#. ~3.3!

The first question of interest is the criterion for the ex
tence of FOFT. We have developed an approach for solv
this problem under weak anchoring cases in our other wo
The criterion can be obtained from

S d2g1

du2 D
u50

.0, ~3.4!
-
g
s.

or from

S d

du
AI

Ĩ
D

u50

,0. ~3.5!

The reasons are obvious, both Eqs.~3.4! and~3.5! contradict
the requirement of the second-order transition atum50, so
they predict the first-order transition. Direct calculations a
show the equivalence of Eqs.~3.4! and ~3.5!,

2 f 1~V0!A2
m

2 S d

du
AI

Ĩ
D

u50

5
a

2
S d2g1

du2 D
u50

,

~3.6!

where f 1(V0).0 ~see Appendix B!. After complicated cal-
culations~see Appendix B! we obtain the criterion

FIG. 1. ~a! Implicit functionsC1(a) andC2(a). They are posi-
tive and monotonous functions. lima→0@C1(a)51,C2(a)5

1
16#,

lima→1`@C1(a)50,C2(a)50#. ~b! Implicit functionsC3(A) and
C4(A). They are positive and monotonous function
limA→0@C3(A)51,C4(A)5

1
8 #, lima→1`@C3(A)50,C4(A)5

1
2 #.



n

he
g
ti

qu
ld
a

-
ng

er

pro-

sh-

692 PRE 62JIANRU SHI AND HONG YUE
no
2

ne
2,S 12

4

9

k11

k33
D1

4

9

k11

k33
F 4 sin 4b18 sin 2b

sin 4b18 sin 2b112bG
2

64

3

A4

A2
F sin 2b cos2 b

sin 4b18 sin 2b112bG , ~3.7!

wherebP@0,p/2# is determined by the boundary conditio
at u50, i.e., by

b tanb5
A2d

2k33
. ~3.8!

Besides the criterion for the existence of FOFT, anot
question of interest is the bistability. The rising and fallin
transitions are mirrorless, the rising threshold intensity sa
fies I (uth

r )5(I )u50 , while the falling threshold intensity is
the minimal extremum ofI (u). For I th

f ,I ,I th
r , there exist

two steady states and a hysteresis. Now we give the e
tions for determining the tricritical points near the thresho

For the rising threshold, we first determine the critic
intensity. Settingu50 at Eq.~3.2! follows that

b5A2
mI th

r

2 Ĩ
5

p

2
AI th

r

I 0

, ~3.9!

where

I 05
ck33

no

p2

d2

ne
2

~ne
22no

2!
. ~3.10!

For the rigid anchoring condition,A2→1`; from Eq. ~3.8!
we haveb→p/2; then from Eq.~3.9! we have I th

r →I 0 .
ThereforeI 0 is just the threshold intensity for the rigid an
choring condition, and this is in agreement with what O
has obtained~see Ref.@1#, Table I,I Fr!. Substituting Eq.~3.9!
into Eq. ~3.8! yields

S p

2
AI th

r

I 0
D tanS p

2
AI th

r

I 0
D 5

A2d

2k33
, ~3.11!
r

s-

a-
.
l

or represented as the well known form

cotFp

2
AI th

r

I 0
G5

2k33

A2d
Fp

2
AI th

r

I 0
G . ~3.12!

This is the same as what Ong has obtained@see Eq.~5.14! in
Ref. @1##.

The rising threshold order parameteruth
r then can be

solved out from

I th
r 5

2ck33

nod2 AS 11
no

22ne
2

ne
2 uth

r D J1
2~uth

r !. ~3.13!

For the falling threshold, we could first determine the ord
parameteruth

f by solving

d

du
AI ~u!

Ĩ
5

d

du
F S 11

no
22ne

2

ne
2

uD 1/4

J1~u!G50,

~3.14!

then obtain the falling threshold intensity by

I th
f 5

2ck33

nod2 AS 11
no

22ne
2

ne
2 uth

f D J1
2~uth

f !. ~3.15!

The above two equations are inspired by what Ong has
posed@see Eq.~4.8! in Ref. @1##.

IV. THE SATURATION FOFT

At the saturation, the results are similar to those of thre
old. The order parameter is chosen asw5cos2 um instead; the
intermediate variablex is introduced by cos2 u5w/x,
(cos2 u05w/x0). It can be easily proved thatu(z)5p/2
throughout the medium whenum5p/2, so w50 describes
the uniform stateu(z)5p/2 throughout the medium. The
two integrals transform to
J15E
x0

1! kS 12
g

k

w

x
DA12

m

h

w

x

A12
m

h

w

x
2A12

m

h
w

w dx

2x2Aw

x
S 12

w

x
D

,

J25E
x0

1! kS 12
g

k

w

x
D

AhS 12
m

h

w

x
D FAhS 12

m

h

w

x
D 2AhS 12

m

h
wD G

w dx

2x2Aw

x
S 12

w

x
D

.
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The boundary condition becomes

J1
2

a2

k

~112R!2

1

A12
m

h

w

x0

12
g

k

w

x0

S 12
2R

112R

w

x0
D 2S 12

w

x0
D

5
1

x0

w

A12
m

h

w

x0
2A12

m

h
w

, ~4.1!

which defines implicit functionx0(w).
The two important functionsI andg2 are both functions

of order parameterw,

AI ~w!

Ĩ
5~h2mw!1/4J1~w!, ~4.2!

g2~w!5
1

a H F11A12
m

h
wGJ1

2~w!

22J1~w!J2~w!AhA12
m

h
wJ

2
~112R!w

x0~w!
1

Rw2

@x0~w!#2 . ~4.3!

The criterion for the FOFT at saturation can be derived
either of the following two relations:

S d

dw
AI

Ĩ
D

w50

.0 ~4.4!

and

S d2g2

dw2 D
w50

.0. ~4.5!

The equivalence of Eqs.~4.4! and~4.5! also can be seen from

A22mk

h
h2~X0!S d

dw
AI

Ĩ
D

w50

52ah1/4S d2g2

dw2 D
w50

,

~4.6!

whereh2(X0).0 ~see Appendix B!.
The criterion for the existence of FOFT at saturation i
y

ne
2

no
2.S 11

4

3

k33

k11
D

2
4

3

k33

k11

4B sech4 B14 tanhB sech2 B

3B sech4 B13 tanhB sech2 B12 tanhB

1
32A4

3~A212A4!

3
tanhB

3B sech4 B13 tanhB sech2 B12 tanhB
, ~4.7!

whereBP@0,1`# is determined by the boundary conditio
at w50, i.e., by

B tanhB5
~A212A4!d

2k11
. ~4.8!

The rising saturation transition occurs at the maximu
extremum ofI (um), the falling saturation critical point sat
isfies I (wsat

f )5(I )w50 . For I sat
f ,I ,I sat

r , bistability and hys-
teresis exist.

The rising saturation order parameterwsat
r can be deter-

mined by solving

d

dw
AI ~w!

Ĩ
5

d

dw
F S no

2

ne
2
2

no
22ne

2

ne
2

wD 1/4

J1
2~w!G50,

~4.9!

while the rising saturation intensity can be obtained by

I sat
r 5

2ck33

nod2 AS no
2

ne
22

no
22ne

2

ne
2 wsat

r D J1
2~wsat

r !. ~4.10!

Settingw50 in the right side of Eq.~4.2! yields

B5h23/4A2
m

2k

I sat
f

Ĩ
5

p

2
Ane

3k33I sat
f

no
3k11I 0

. ~4.11!

Substituting Eq.~4.11! into Eq. ~4.8! follows

S p

2
Ane

3k33I sat
f

no
3k11I 0

D tanhS p

2
Ane

3k33I sat
f

no
3k11I 0

D 5
~A212A4!d

2k11
,

~4.12!

or represented as the well known form

cothS p

2
Ane

3k33I sat
f

no
3k11I 0

D 5
2k11

~A212A4!d S p

2
Ane

3k33I sat
f

no
3k11I 0

D ,

~4.13!

which determines the falling saturation intensity. The falli
saturation intensity is just the intensity to maintain the sa
ration state, Ong obtained the above relation in Ref.@1# @see
Eq. ~5.17! in Ref. @1# #. The falling saturation order param
eter then can be obtained from

I sat
f 5

2ck33

nod2 AS no
2

ne
22

no
22ne

2

no
2 wsat

f D J1
2~wsat

f !. ~4.14!
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V. DISCUSSION AND CONCLUSIONS

A. The boundary conditions, optical anisotropy,
and the criteria

The anchoring strength can be characterized by the
lowing two dimensionless parameters:

a5
A2d

2k33
, A5

~A212A4!d

2k11
. ~5.1!

a andA are related only to material mechanical paramet
and cell geometrical parameters. Whenum50 and um
5p/2, the boundary conditions become

b tanb5a, B tanhB5A. ~5.2!

~Here A and B represent upper case Greek alpha and be!
Due to Eq.~5.2!, the criteria~3.7! and~4.7! can be expresse
as

no
2

ne
2,S 12

4

9

k11

k33
D1

4

9

k11

k33
C1~a!2

64

3
RC2~a!, ~5.3!

ne
2

no
2.S 11

4

3

k33

k11
D2

4

3

k33

k11
C3~A!1

32

3

R

112R
C4~A!,

~5.4!

respectively, whereC1(a), C2(a), C3(A), andC4(A) are
illustrated in Fig. 1. The material optical parameters app
only in the left-hand sides of Eqs.~5.3! and ~5.4!. So the
above two criteria explicitly prove a law: for the first-ord
Fréedericksz transition to occur either at threshold or satu
tion point, no /ne should be small, i.e., optical anisotrop
should be large.

The four functionsC1(a), C2(a), C3(A), andC4(A) are
all positive and monotonous, so the requirements for the
order transition can be stated as~1! small a and negativeR,
small no /ne , and smallk11/k33 favor the threshold FOFT
~2! small A and negativeR, smallno /ne , and smallk33/k11
favor the saturation FOFT.

B. The critical cell thickness

When the cell thicknessd→0, the criteria for threshold
and saturation FOFT become, respectively,

no
2

ne
2,12

4

3

A4

A2
, ~5.5!

ne
2

no
2.11

4

3

A4

~A212A4!
. ~5.6!

When the cell thicknessd→1`, the criteria for threshold
and saturation FOFT become, respectively,

no
2

ne
2,12

4

9

k11

k33
, ~5.7!

ne
2

no
2.11

4

3

k33

k11
1

16

3

A4

~A212A4!
. ~5.8!
l-

s

.

r

-

st

The definition ofB requiresB.0 ~see Appendix B!; it
follows thatA212A4.0. If A4<0, we note that Eqs.~5.5!
and ~5.6! can be met naturally for any positive nematic m
terials in a homeotropic cell. It follows an interesting concl
sion: for any positive nematic materials in a homeotro
cell, if the anchoring conditions at the substrates are k
unchanged, then there exists a critical cell thickness, w
thinner than which the first-order transitions will exist.
A4.0, the critical cell thickness may not exist for relative
largeA4 .

Exact critical cell thickness can be obtained numerica
from Eqs.~5.3! and ~5.4!, which, for smalla andA, can be
approximated by

no
2

ne
2,12

4

9

k11

k33
Fa2

1

3
a2G2

4

3

A4

A2
S 12a1

a2

3 D , ~5.9!

ne
2

no
2.11

4

9

k33

k11
S A1

1

2
A2D1

4

3

A4

~A212A4! S 11A1
1

2
A2D ,

~5.10!

respectively, where we employb2'a2a2/3 and B2'A
1A2/2. If a2 andA2 in Eqs.~5.9! and ~5.10! are neglected,
then the explicit critical cell thickness, denoted bydth and
dsat, respectively, can be obtained approximately,

dth'

2k33

A2
S 12

no
2

ne
22

4

3

A4

A2
D

S 4

9

k11

k33
2

4

3

A4

A2
D , ~5.11!

dsat'

2k11

~A212A4! S ne
2

no
2212

4

3

A4

A212A4
D

S 4

9

k33

k11
1

4

3

A4

A212A4
D . ~5.12!

Yang and Rosenblatt reported an interfacial potential
gs5(11.7 sin2 u17.8 sin4 u)31023 erg/cm2 for a MBBA liq-
uid crystal homeotropic cell@6#. By using the related mate
rial parameters listed in Table I, we find that FOFT will n
occur for any cell thickness.

The reported measurements of the anchoring stren
show thatA2 is about (1024– 100) erg/cm2 @8#. Under the
special anchoring conditions A251024 erg/cm2, A4
50 erg/cm2, we calculate the critical cell thickness for som
known NLC’s in Table I@9#.

Obviously the thinner the cell thickness, the stronger
first-order transitions, so

d!dth or dsat ~5.13!

predicts strong first-order transitions. Table I shows tha
110 °C PAA will be most suitable for observing the firs
order transitions in the absence of any bias fields.

C. Criteria for the anchoring limits

The anchoring limits include the rigid anchoring limit an
the zero-anchoring limit, which can be attained by taking
limit A2→1` or 0 in the single parameter RP potential. T
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TABLE I. The critical cell thickness for the threshold and saturation FOFTs under special weak anc
conditionsA251024 erg/cm2, A450 erg/cm2.

NLC
Temp.
~°C!

k11

(1027 dyn)
k33

(1027 dyn)
l

~Å! no ne

dth

~mm!
dsat

~mm!

E7 30 10.1 16.20 5893 1.524 1.732 264 83
5CB 26 7.20 8.52 5890 1.533 1.703 86 64
5CB 26 7.20 8.52 5890 1.540 1.719 90 67
5CB 26 5.20 7.17 5890 1.533 1.703 84 40
8CB 34 4 7 6328 1.516 1.665 94 21
8CB 34 4 7 6328 1.521 1.670 94 21
MBBA 22 6.95 8.99 6328 1.544 1.758 120 72
PAA 110 9.26 18.10 4800 1.595 1.995 574 120
PAA 120 7.80 13.60 4800 1.600 1.967 361 103
PAA 125 6.94 11.90 4800 1.605 1.949 296 86
PAA 130 5.67 9.05 4800 1.611 1.928 196 69
RP

s,

o

s.

be
ha
-

It

e
ri

n,
en
ed
nd

in-
ni-
r
an-

ll

T;

al
o-

er-
ob-
que:

to
bias
criteria for the anchoring conditions described by the
potential can be obtained by settingA450 in Eqs.~3.7! and
~4.7!,

no
2

ne
2,S 12

4

9

k11

k33
D1

4

9

k11

k33
F 4 sin 4b18 sin 2b

sin 4b18 sin 2b112bG ,
~5.14!

ne
2

no
2.S 11

4

3

k33

k11
D

2
4

3

k33

k11

4B sech4 B14 tanhB sech2 B

3B sech4 B13 tanhB sech2 B12 tanhB
.

~5.15!

Taking the limit ofb→p/2, B→1` transforms Eqs.~5.14!
and~5.15! into the criteria for the rigid anchoring condition

no
2

ne
2,S 12

4

9

k11

k33
D , ~5.16!

ne
2

no
2.S 11

4

3

k33

k11
D . ~5.17!

For the zero-anchoring limit, interestingly both of the tw
criteria degenerate to

no,ne , ~5.18!

which holds naturally for all positive nematic liquid crystal

D. Comments on the criteria obtained by Ong

Ong has tried to give the criteria for the transitions to
first order. For the threshold transition, he proposed t
@dI/d(um

2 )#um50,0 predict first-order transition. This is ex
act and is adopted by us in Eq.~3.5!. However, when calcu-
lating @dI/d(um

2 )#um50 , the approximation is introduced.
does not cause trouble for rigid anchoring conditions@see
Eq. ~4.9! in Ref. @1# and Eq.~5.16! in this paper; they are
same#, while for finite anchoring conditions, he failed to giv
the correct criterion. Here we copy his criterion for compa
son @Eq. ~5.16! in Ref. @1# #
t

-

S k11

k33
1

9

4

no
2

ne
22

9

4DpAI th
r

I 0
1S k11

k33
1

3

4

no
2

ne
22

3

4D
3sinS pAI th

r

I 0
D ,0. ~5.19!

To make a comparison with our criterion~5.14!, we apply
Eqs.~3.9! to Eq. ~5.19! and rewrite it as

no
2

ne
2 ,S 12

4

9

k11

k33
D2

4

9

k11

k33

2 sin 2b

6b1sin 2b
. ~5.20!

We see that the difference between Eqs.~5.20! and~5.14! is
great. We obtain our criterion through exact calculatio
while approximation is introduced in Ong’s calculation wh
employing Landau theory. Therefore the criterion obtain
by Ong for the finite anchoring conditions is incorrect a
should be revised.

E. Conclusions

We explored in this paper the first-order transitions
duced by the surface field and the optical field. For an i
tially homeotropically aligned LC cell, the exact criteria fo
the threshold and saturation FOFTs are given under any
choring conditions. They can be summed up as follows:

~1! Weak interfacial interaction favors FOFT, i.e., sma
A2 and negativeA4 may lead to the first-order transitions.

~2! Large material anisotropy favors FOFT, i.e.,no /ne
should be small for both threshold and saturation FOF
also, for the threshold FOFT,k11/k33 should be small, and
for the saturation FOFT,k33/k11 should be small.

~3! The thinner cell favors FOFT. There exists a critic
cell thickness for any positive nematic liquid-crystal home
tropic cell whenA4 is negative or positively minimal.

The surface interaction remains one of the least und
stood areas of the liquid-crystal physics; the conclusions
tained in this paper pose a question on the surface techni
how to obtain the surface anchoring condition of minimalA2
and negativeA4 . Under this condition, one may expect
observe the first-order transitions in the absence of any
fields.
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APPENDIX A

We denotenp(u)5none /(Ano
2 sin2 u1ne

2 cos2 u). Integrating Eq.~2.2! yields

S du

dzD
2

5
2I

ck33

np~um!2np~u!

11~k21!sin2 u
, ~A1!

or it is rewritten as

dz5Ack33

2Ino
~11m sin2 um!1/4A ~11g sin2 u!A11m sin2 u

A11m sin2 u2A11m sin2 um

du. ~A2!

Substituting the above relations and Eqs.~2.13! into ~2.1! yields

Gdef52SE
0

d/2H 1

2
k33@11~k21!sin2 u#S du

dzD
2

2
I

c
npJ dz1SA2 sin2 u0~11R sin2 u0!

52SE
0

d/2H I

c
@np~um!2np~u!#2

I

c
np~u!J dz1SA2 sin2 u0~11R sin2 u0!

52SE
u0

umH I

c
np~um!2

2I

c
np~u!JAck33

2I

@11~k21!sin2 u#

@np~um!2np~u!#
du1SA2 sin2 u0~11R sin2 u0!

5SA2Ik33

cno
~11m sin2 um!1/4E

u0

um

$np~um!22np~u!%A ~11g sin2 u!A11m sin2 u

A11m sin2 u2A11m sin2 um

du1SA2 sin2 u0~11R sin2 u0!

5SA2IK 33

cno
~11m sin2 um!1/4$np~um!J122noJ2%1SA2 sin2 u0~11R sin2 u0!

5
2S

d

k33

no
A11m sin2 um$np~um!J1

222noJ1J2%1SA2 sin2 u0~11R sin2 u0!

5
A2S

a
$J1

222J1J2A11m sin2 um%1SA2 sin2 u0~11R sin2 u0!. ~A3!

Applying the same relations on Eq.~2.3! yields Eq.~2.7!

APPENDIX B

We define

Vn5S dnn0

dun D
u50

, f n~n0!5E
n0

1 nndn

2An~12n!
,

and then we have

f 0~n0!5arccosAn0, f 1~n0!5
1

2
@ f 0~n0!1An0~12n0!#, f 2~n0!5 3

8 f 0~n0!1An0~12n0!F3

8
1

n0

4 G .
The boundary condition atu50 becomes

aA V0

12V0
5arccosAV0. ~B1!

We defineb5arccosAV0, then~B1! becomesa5btgb. Taking the first-orderu derivative atu50 results in

F f 1~V0!

V0~12V0!GV15
k

2
@ f 1~V0!1V0f 0~V0!#1

3m

8
@ f 1~V0!2V0f 0~V0!#22RV0f 0~V0!. ~B2!

Because
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~J1!u505A2
2

m
f 0~V0!, ~B3!

S dJ1

du D
u50

5A2
2

m H 2
V1

2AV0~12V0!
1

1

8
~3m14k! f 1~V0!1

1

8
m f 0~V0!J , ~B4!

so we have

S d

du
AI

Ĩ
D

u50

5
m

4
~J1!u501S dJ1

du
D

u50

5
m

4
A2

2

m
f 0~V0!1A2

2

m H 2
V1

2AV0~12V0!
1

1

8
~3m14k! f 1~V0!1

1

8
m f 0~V0!J

5A2
2

m H k

4 F 2 f 1
2~V0!

AV0~12V0!
2 f 1~V0!2V0f 0~V0!G

1
3m

16 F @ f 1~V0!1 f 0~V0!#
2 f 1~V0!

AV0~12V0!
2 f 1~V0!1V0f 0~V0!G1RV0f 0~V0!J . ~B5!

We have, by applying Eq.~B1!,

S dg1

du D
u50

5
1

a
@aV02AV0~12V0! f 0~V0!#50, ~B6!

and

S d2g1

du2 D
u50

5
2

a F f 1~V0!

AV0~12V0!
GV11

2

a
$~ 3

4 m2k! f 0~V0!@ f 2~V0!2 f 1~V0!#2~ 3
4 m1k! f 1

2~V0!1aRV0
2%

5
2

a

k

4 F f 1~V0!1V0f 0~V0!2
2 f 1

2~V0!

AV0~12V0!
G1

2

a S 3m

16D H f 1~V0!2V0f 0~V0!2@ f 1~V0!1 f 0~V0!#
2 f 1~V0!

AV0~12V0!
J

2
2

a
RV0f 0~V0!. ~B7!

We define

t5
2a~112R!

k
, p5aR, s5

mk

h
, Xn5S dnx0

dwn D
w50

, hn~x0!5E
x0

1 dx

xnA12x
,

then we have

h1~x0!5 lnS 11A12x0

12A12x0
D , h2~x0!5

1

2
h1~x0!1

A12x0

x0
, h3~x0!5

3

8
h1~x0!1

1

2

A12x0

x0
2 1

3

4

A12x0

x0
.

The boundary condition atw50 becomes

lnS 11A12X0

12A12X0
D 5

t

A12X0

. ~B8!

We defineB5 1
2 ln@(11A12X0 )/(12A12X0)#, then we have 2B tanhB5t. The first-order derivative is

X15
1

k F S 4p

t
1

1

2
1

3s

8 D h1~X0!

h2~X0!

~12X0!

X0
1S 1

2
2

3s

8 D ~12X0!G . ~B9!

Because
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~J1!w505A2
kh

2m
h1~X0!, ~B10!

S dJ1

dw D
w50

5A2
kh

2m H 2X1

X0A12X0

1F S 1

2

1

k
2

3

8

m

h Dh2~X0!2
1

8

m

h
h1~X0!G J . ~B11!

So we have

S d

dw
AI

Ĩ
D

w50

5
1

4
h23/4~2m!~J1!w501h1/4S dJ1

dw
D

w50

5
1

4
h23/4A2

kh

2m H h1~X0!14hF 2X1

X0A12X0

1S 1

2

1

k
2

3

8

m

h D h2~X0!2
1

8

m

h
h1~X0!G J

5
h3/4

A22mkh2~X0!
H 1

2 S t2

4~12X0!
1

t

2X0
2

t

X0
2D 2

3s

8 S 3t2

4~12X0!
1

3t

2X0
1

t

X0
2D 2

4p

X0
2J . ~B12!

We have, by applying Eq.~B8!,

aS dg2

dw D
w50

5
k

2 Fh1~X0!
A12X0

X0
2

t

X0
G50 ~B13!

and

aS d2g2

dw2 D
w50

52kX1F h2~X0!

X0A12X0
G12H F1

4
1

3s

16Gh1~X0!h3~X0!1F1

4
2

3s

16Gh2
2~X0!1S 2

1

4
2

3s

16Dh1~X0!h2~X0!1
p

X0
2J

5
1

2 H 1

2 S t2

4~12X0!
1

t

2X0
2

t

X0
2D 2

3s

8 S 3t2

4~12X0!
1

3t

2X0
1

t

X0
2D 2

4p

X0
2J . ~B14!
s
.

G
R

ns

ch.
d
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